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Part 1. Basic Knowledge of Optimal Transport
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Static Optimal Transport

The static optimal transport (OT) map is defined as the coupling between
π0 and πT minimizing the Wasserstein-2 metric, i.e.

ΠOT
0,T = argminΠ0,T

{
EΠ0,T

[
∥X0 − XT ∥2

]
: Π0 = π0,ΠT = πT

}
.

Under mild assumptions on π0, πT , the OT map can be obtained by
solving a dynamic Optimal Transport problem.

Yidong Ouyang (CUHKSZ) Sythetic Data Generation May 28, 2023 4 / 27



Static Optimal Transport

The static optimal transport (OT) map is defined as the coupling between
π0 and πT minimizing the Wasserstein-2 metric, i.e.

ΠOT
0,T = argminΠ0,T

{
EΠ0,T

[
∥X0 − XT ∥2

]
: Π0 = π0,ΠT = πT

}
.

Under mild assumptions on π0, πT , the OT map can be obtained by
solving a dynamic Optimal Transport problem.

Yidong Ouyang (CUHKSZ) Sythetic Data Generation May 28, 2023 4 / 27



Dynamic Optimal Transport

vOT = argminv

{∫ T

0
EPt

[
∥v (t,Xt)∥2

]
dt,

dXt = v (t,Xt) dt,P0 = π0,PT = πT .

The OT map is then obtained by sampling X0 ∼ π0 followed by
dXt = vOT (t,Xt) dt. The joint samples at the initial and final times
satisfy (X0,XT ) ∼ ΠOT

0,T .
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Part 2. Flow matching
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Flow Matching
Conditional Flow Matching is proposed by 123 concurrently.
They learn an ODE/velocity field: Given a probability density path pt(x)
(p1 = q) and a corresponding vector field ut(x), which generates pt(x), we
define the Flow Matching (FM) objective as

LFM(θ) = Et,pt(x)

∥∥∥vθt (x)− ut(x)
∥∥∥2 ,

Problem: ut(x) is intractable
Solution:

construct a probability path through a mixture of simpler probability
path
marginalizing over the conditional vector flow

1Lipman, et. al. Flow Matching for Generative Modeling. ICLR 2023
2Tong et. al. Conditional Flow Matching: Simulation-Free Dynamic Optimal

Transport. ArXiv, abs/2302.00482.
3Liu et. al. Flow Straight and Fast: Learning to Generate and Transfer Data with

Rectified Flow. ICLR 2023.
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Flow Matching

Construct a probability path through a mixture of simpler probability path:

Given a data sample x1 ∼ q, construct pt (x | x1), s.t., p0 (x | x1) = p0(x)
and p1 (x | x1) to be a distribution concentrated around x = x1, e.g.,
p1 (x | x1) = N

(
x | x1, σ2I

)
. Then,

pt(x) =

∫
pt (x | x1) q (x1) dx1

p1(x) =

∫
p1 (x | x1) q (x1) dx1 ≈ q(x)
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Flow Matching

Marginalizing over the conditional vector flow:

Let ut (· | x1) be the conditional vector field that generates pt (· | x1)

ut(x) = Eq(x1)[
ut (x | x1) pt (x | x1)

pt(x)
]

Then, ut is the vector field that generate pt. (The proof is left to the end
of this section)
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Conditional Flow Matching

Thing can be much simpler:

LCFM(θ) = Et,q(x1),pt(x|x1)

∥∥∥vθt (x)− ut (x | x1)
∥∥∥2

with the guarantee
∇θLFM (θ) = ∇θLCFM (θ)

All we need is to calculate the closed form of ut (x | x1):

Let
pt (x | x1) = N

(
x | µt (x1) , σt (x1)2 I

)
,

then
ut (x | x1) =

σ′t (x1)

σt (x1)
(x− µt (x1)) + µ′t (x1) .
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Example4

We can define the pt (x | x1) as different form:
Variance Exploding (VE) form:

pt(x) = N
(
x | x1, σ21−tI

)
,

then we get
ut (x | x1) = −

σ′1−t

σ1−t
(x− x1) .

Variance Preserving (VP) form

pt (x | x1) = N
(
x | α1−tx1,

(
1− α2

1−t

)
I
)
,

where αt = e−
1
2
T (t), T (t) =

∫ t
0 β(s)ds, then we get

ut (x | x1) =
α′
1−t

1− α2
1−t

(α1−tx− x1)

4Lipman, et. al. Flow Matching for Generative Modeling. ICLR 2023
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Example

Optimal Transport displacement map form:

µt(x) = tx1, and σt(x) = 1− (1− σmin) t,

then we get
ut (x | x1) =

x1 − (1− σmin)x

1− (1− σmin) t
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Proof 1:ut is the vector field that generate pt

Tool 1: continuity equation

One method of testing if a vector field vt generates a probability path pt is
the continuity equation. It is a Partial Differential Equation (PDE)
providing a necessary and sufficient condition to ensuring that a vector
field vt generates pt,

d

dt
pt(x) + div (pt(x)vt(x)) = 0

where the divergence operator, div, is defined with respect to the spatial
variable x =

(
x1, . . . , xd

)
, i.e., div =

∑d
i=1

∂
∂xi .
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Proof 1:ut is the vector field that generate pt

To verify this, we check that pt and ut satisfy the continuity equation
(equation 25):

d

dt
pt(x) =

∫ (
d

dt
pt (x | x1)

)
q (x1) dx1

= −
∫

div (ut (x | x1) pt (x | x1)) q (x1) dx1

= − div
(∫

ut (x | x1) pt (x | x1) q (x1) dx1
)

= − div (ut(x)pt(x))

Yidong Ouyang (CUHKSZ) Sythetic Data Generation May 28, 2023 14 / 27



Proof 2: LFM and LCFM are equivalent
objective: ∇θEt,pt(x)

∥∥∥vθt(x)−ut(x)

∥∥∥2 = ∇θEt,q(x1),pt(x|x1)

∥∥∥vθt(x)−ut(x|x1)

∥∥∥2
∥vt(x)− ut(x)∥2 = ∥vt(x)∥2 − 2 ⟨vt(x), ut(x)⟩+ ∥ut(x)∥2

∥vt(x)− ut (x | x1)∥2 = ∥vt(x)∥2 − 2 ⟨vt(x), ut (x | x1)⟩+ ∥ut (x | x1)∥2

Ept(x) ∥vt(x)∥
2 =

∫
∥vt(x)∥2 pt(x)dx =

∫
∥vt(x)∥2 pt (x | x1) q (x1) dx1dx

= Eq(x1),pt(x|x1) ∥vt(x)∥
2 ,

Ept(x) ⟨vt(x), ut(x)⟩ =
∫ 〈

vt(x),

∫
ut (x | x1) pt (x | x1) q (x1) dx1

pt(x)

〉
pt(x)dx

=

∫ 〈
vt(x),

∫
ut (x | x1) pt (x | x1) q (x1) dx1

〉
dx

=

∫
⟨vt(x), ut (x | x1)⟩ pt (x | x1) q (x1) dx1dx

= Eq(x1),pt(x|x1) ⟨vt(x), ut (x | x1)⟩
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Proof 3: The analytic form of conditional vector field
For notational simplicity let wt(x) = ut (x | x1). For the following ODE,

d

dt
ψt(x) = wt (ψt(x))

Let x = ψ−1(y) and get
ψ′
t

(
ψ−1(y)

)
= wt(y) (1)

Inverting ψt(x) provides

ψ−1
t (y) =

y − µt (x1)

σt (x1)

Differentiating ψt with respect to t gives
ψ′
t(x) = σ′t (x1)x+ µ′t (x1) .

Plugging these last two equations in equation (1) we get

wt(y) =
σ′t (x1)

σt (x1)
(y − µt (x1)) + µ′t (x1)
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Part 3. Basic Knowledge of Schrödinger Bridge
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Dynamic Schrödinger Bridge

The dynamic Schrödinger Bridge (SB) problem consists in finding a path
measure PSB ∈ P(C) := P

(
C
(
[0, T ],Rd

))
such that

PSB = argminP {KL(P | Q) : P0 = π0,PT = πT } ,

where Q ∈ P(C) is a reference path measure, defined by the diffusion
process dXt = ft (Xt) dt+ σt dBt, X0 ∼ Q0.
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One form of the solution of Dynamic Schrödinger Bridge

The optimal solution admits the form: PSB =
∫
Q|0,T dΠSB

0,T where
ΠSB

0,T = argminΠ0,T
{KL (Π0,T | Q0,T ) : Π0 = π0,ΠT = πT } is the solution

of the static SB problem, and Q is a multivariate Brownian motion with
standard deviation σ.
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Static Schrödinger Bridge Link with Optimal Transport

The static SB problem can be solved by the entropy-regularized optimal
transport

ΠSB
0,T = argminΠ0,T

{
EΠ0,T

[
∥X0 − XT ∥2 − 2σ2TH (Π0,T )

]
Π0 = π0,ΠT = πT

}
where H(Π) =

∫
lnΠ(x, y)dΠ(dx, dy) denotes the entropy, and ΠSB

0,T is an
entropy-regularized OT plan.
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Static Schrödinger Bridge Link with Optimal Transport

The static SB problem can also be solved by dynamic optimal transport

vSB = argminv

{∫ T

0
EPt

[
∥v (t,Xt)∥2

]
dt

dXt = v (t,Xt) dt+ σdBt,P0 = π0,PT = πT

}
.
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Part 4. Different ways for solving Schrödinger
Bridge Problem
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Iterative Proportional Fitting

One classical solution is Sinkhorn algorithm:

P2n+1 = argminP
{

KL
(
P | P2n

)
PT = πT

}
,

P2n+2 = argminP
{

KL
(
P | P2n+1

)
: P0 = π0

}
,

Bortoli et al 5 adopt IPF for solving Schrödinger Bridge by learning a
diffusion model.

5Bortoli et al. Diffusion Schrödinger Bridge with Applications to Score-Based
Generative Modeling. NIPS 2021.
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Bridge

PSB =
∫
Q|0,T dΠSB

0,T , where Q|0,T denotes the bridge that has the
reference measure Q together with fixed initial and terminal point. Let

Q : dZt = b (Zt, t) dt+ σ (Zt, t) dWt,

By the result from h-transform, Q|0,T obeys

dZt =
(
b (Zt, t) + σ2 (Zt, t)∇z log qT |t (x | Zt)

)
dt+ σ (Zt, t) dWt,

where qT |t(x | z) is the density function of the transition probability
QT |t(ZT = x | Zt = z).
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Bridge

If the reference measure is a Brownian motion, i.e., dZt = σt dWt,
we have QT |t(· | z) = N (z, βT − βt), where βt =

∫ t
0 σ

2
s d, then Q|0,T

obeys6

dZt = σ2t
x− Zt

βT − βt
dt+ σt dWt

Note that the drift grows to infinity in magnitude with a rate of
O (1/ (βT − βt)) as t→ T , which ensures that Zt = x with probability
one.

6Liu et. al. Learning Diffusion Model Bridges on Constrained Domains. ICLR 2023.
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Bridge

For the general reference measure, it hard to get the analytic form of the
corresponding bridge since the analytic form of the transition density is the
solution of the backward Kolmogorov equation, which is hard to solve in
high dimensional case.

Bortoli et. al.7 propose to use score matching to learn the drift term of
the bridge.

7Bortoli et. al. Simulating Diffusion Bridges with Score Matching. ArXiv,
abs/2111.07243.
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Forward-backward SDE8

Let Ψ(t,x) and Ψ̂(t,x) be the solutions to the following PDEs:{
∂Ψ
∂t = −∇xΨ

⊤f − 1
2 Tr

(
g2∇2

xΨ
)

s.t. Ψ(0, ·)Ψ̂(0, ·) = pdata
∂Ψ̂
∂t = −∇x · (Ψ̂f) + 1

2 Tr
(
g2∇2

xΨ̂
)

Ψ(T, ·)Ψ̂(T, ·) = pprior

Then, the solution to the dynamic Schrödinger Bridge problem can be
expressed by the following SDE:

dXt =
[
f + g2∇x logΨ(t,Xt)

]
dt+ g dWt, X0 ∼ pdata ,

dXt =
[
f − g2∇x log Ψ̂ (t,Xt)

]
dt+ g dWt, XT ∼ pprior ,

where ∇x logΨ(t,Xt) and ∇x log Ψ̂ (t,Xt) are the optimal forward and
backward drifts for SB. Also, the marginal density obeys
pSB
t (Xt) = Ψ (t,Xt) Ψ̂ (t,Xt).

8Chen et. al. Likelihood Training of Schrödinger Bridge using Forward-Backward
SDEs Theory. ICLR 2022.
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